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&&tic electrovacs with scalar fields 

A F da F Teixeira, Idel Wolk and M M Som 
Centro Brasileiro de Pesquisas Fisicas, ZC-82 Rio de Janeiro, Brazil 

Received 2 June 1975, in final form 13 August 1975 

Abstract Static solutions of the Einstein-Maxwell scalar equations are obtained from known 
vacuum solutions, in which the specific electric charge as well as the specific scalar charge may 
assume arbitrary values. Two types of long-range scalar fields are considered : one is repulsive, 
like the Coulomb field, the other is attractive, like the gravity field. The effect of the super- 
position of these two types of fields is also studied. The solutions presented tend straight- 
forwardly to the corresponding vacuum solutions when the constants associated with the 
electromagnetic and scalar strengths tend to zero. 

lsa pioneering work Weyl (1917) obtained the class of solutions of Einstein-Maxwell 
tpions for static systems with cylindrical symmetry, when there exists a functional 
dmiship between the electrostatic potential $ and the metric component goo. Later 
hjumdar (1947) generalized these results for electrostatic systems with or without 

symmetry, showing that goo = 1 +A$ + 4’ ; however, the interpretation of the 
wataot A was not given. At the same time Papapetrou (1947) presented a special class 
dsolutions involving magnetostatic potentials $* for which goo = (1 +/$*I)’. After 
bbnnor  (1954) showed how to generate a purely magnetostatic solution from a 
My electrostatic one. Soon after, Ehlers (1955a) in a remarkable work presented a 
ad for developing a purely electrostatic or a purely magnetostatic solution from a 
mvacuum solution; in the same year he extended (Ehlers 1955b) his results to 
methe constant A of Majumdar, and also introduced a one-parameter class of long- 
W scalar fields; however, in his solutions one finds difficulty in interpreting the 
-tS associated with the electromagnetic and scalar fields, and also the original 
@@um solutions cannot be obtained simply by putting the constants associated with 
hfields equal to zero. These difficulties are also encountered in later works of 
hor(1961) and of Janis et al(1967). Other reeent approaches to the subject (but not 
-gscalar fields) have been made by Harrison (1968), Geroch (1971) and Kinnersley 
‘lv3); Buchdahl(l959) considered long-range scalar fields, but did not include electro- 
*!icfields; and finally De (1969) studied the solutions of a set of equations of 
Lem-Mawell-Klein40rdon combined fields, in which the inverse length parameter 
’*led with the mass of the system. 

In this Paper we present an extended solution of the problem proposed by Ehlers 
nsss, b, ;ubgthe operation of duality rotation we are able to introduce simultaneously 
&‘aticand magnetostatic fields. Differently from previous works, all the constants 

apWr in our solutions have simple interpretations at least .in the weak-field 
’PPoxlmation. Since scalar fields seem to play an interesting role in the structure of 
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elementary particles (Teixeira et a1 1975), we consider here simultaneously two possiblr 
c l a s  ofone-parameter scalar fields that can be fitted in Einstein’s theory. An inter- 
feature of Our solution is the straightforward recovery of the original vacuum s o l U h  
when one puts the constants associated with the strengths of the electromagnetic 
scalar fields equal to zero. 

A F a h  F Teixeira, Idel Wolk and M M Som 

2. Fieldequations 

We consider the general static line element 
&‘=e 2 1  ( dX0)2 - ee2*hij dxi &, 

with t,b and hij functions of the space coordinates xk only. Then the non-vanishing” 
ponents of the Ricci tensor R,, are 

Roo = -e4$A$, (3 
Rij = Hij+2$,i$.j-hijA$. 0 

where H i j  and A are the Ricci tensor and the Laplacian operator built up from h,, anda 
comma denotes ordinary derivative. 

Maxwell’s equations in empty space are 

Ff’ = 0, (4 
E(lYpaFpv.p = 0. 

where a semicolon denotes covariant derivative and cpVp0 is the totally antisymmevic 
unitary contravariant tensor density of weight + 1 ; for stationary systems we can wrk 
from (5 )  

Foi = -4.i 161 

where from (4) and (1) the electrostatic potential (b satisfies 
(h’!* e-z$h’j+ .) . = 0, 

,I .I 

with h = det h, and hi%,, = 6;. The energy-momentum tensor 

E,, = ( F Z ,  -g , ,Faf iFBz/4) /4~,  (I! 

8nEoo = e2W4*i4,j .  p! 
8nEij = ( ~ ~ j ~ m 4 , k ~ . ~ - 2 ~ . i ~ , j )  e-2*. (101 

corresponding to an electromagnetic field whose only antisymmetric components 
given by (6), has the surviving components 

Another long-range field which we will consider is the ‘massless’ real scalar fields 
which satisfies in regions free of scalar sources (Idel Wolk et al 1975) the equation 
$f = 0, which in static systems (1) takes the form 

(h”2hiJSJj = 0. (11) 

There are indeed two classes of such fields : the first class is responsible for an attraFon 
between two static sources of the same sign, so we call such gravity-like fields attract’?: 
sources of opposite sign would repel each other. The second class is a 
field, in the sense that two static sources of the same sign repel each other, whilesom 
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doQPosjte s i p  feel a mutual attraction; we call such fields repulsive. The energy- 
pmeotum tensor of a long-range scalar field is 

s,, = f (S.,S,, -g , ,~“S,am/4~ (12) 

be PIUS and minus signs correspond to attractive and repulsive scalar fields, 
e i v e l y ;  the demonstration of this assertion is given in the appendix. Throughout 

we follow this sign convention. 
consider now the Ehlers (1955b) problem : given a static solution (V, h,) of kt ma’s vacuum equations 

h2 = e2v(dxo)2 - e-2vhij dx‘ dxj, (13) 

R,, = 0. (14) 

h2 = e2*(dX0)2 - e-2*hij dx’ dxj, 

R,,-g,vR/2 = - WE,,+ SPY)’ 

rcamt a static solution ($, hi,, 4, S )  of the Einstein-Maxwell scalar equations 

(15) 

(16) 

rith the electrostatic potential 4 functionally related to the gravitational potential $, 
lndalso the scalar potential S functionally related to $ ; also this $ is to bear a functional 
&tionship with the vacuum gravitational potential V. 

That is to say, given the functions Vand h, of the space coordinates satisfying 

(h’lzhiJV.) . = 0, 
, I  ,J 

lI i j+2yiyj = 0, 

Rwant $, 4 and S satisfying Maxwell and scalar equations 

(e-Z$h’/’hij4 .) . = 0, 
,I 9 1  

(h”2h”S,i),j = 0, 

Einstein’s equations 

’ Untions of the equations 

Fmm(17)and (19) and considering that both 4 and rC/ are functionally related with V, we 
&that 

e-’*+. , I  = - aYi, a = constant; 
%%‘from (17) and (20) we get 
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Now substituting (18) and (21) into (22), and considering (23) and (24) gives US 

A F & F Teixeira, Idel Wolk and M M SOm 

vi = (c2 +a2 (zsl 
c = (1 Tc2)”2 CZat 

e-‘ = cosh CV-(1 + u ~ / C ’ ) ’ / ~  sinh CV. 

# = -(a/C) e’ sinh CV, (arr 
Foi = a e W i ,  (29) 

which yields on integration 

(9 
Then the electrostatic potential # and the electrostatic field are, from (23), (27) 

(61, 

while the scalar field is, from (24), 

s =  +_cl/. 

In the case of vanishing electrostatic and scalar fields (a = c = 0), the two line elemenis 
(13) and (15) coincide, since from (27) and (26) we get C = 1 and $ = V. This eased 
recovery of the vacuum solution is an interesting feature of our solutions. 

In the absence of scalar fields one gets from (27) and (28) Majumdar’s relation 

e2* = 1 - 2( 1 + u2)1’2$/a + c = o ;  (31) 

for weakly charged systems (small values of a) we have from (28) the ratio b/u h t e .  
We have imposed a functional relationship between the electrostatic potend 6 

and the gravitational potential.$ ; in the weak-field approximation we have both I) 20 

and V 2: 0, so from (28) # 2: -aV. Except in some particular space-symmetric systems, 
the proportionality of these potentials can only be achieved when the ratio of the SOW 

of gravity to that of electrostatics is independent of position. Then the parameter a Onbt 
interpreted in this approximation as a constant ratio between the electrostatic cha@ 
density and the original mass density. Similarly the parameter c in (30) would beb 
constant ratio between a scalar source density and the original mass density. 

It is known (Misner and Wheeler 1957) that the same energy-momentum tensorE8? 
corresponds to two different electromagnetic fields F,, and F,, when these two fields 
are related by a duality rotation, 

F;, = F,, COS 0 + *F,, sin 8, 

*FBI = ( - g ) -  1‘Z~rvPuFFp,,/2; (331 

e-* = cosh CV-[ l+ (a2+b2) /C2]1 ’Z  sinh CV 

Fij = (&)( - g ) - l P c O i j k $ . k  (39 

(32) 

where 0 is an arbitrary real constant and *F,, is the dual of Fpp, 

as a consequence, we can generalize our solution (27) to 

(31 
by including a magnetostatic field 

where b is a constant related to the angle 0 of the duality rotation by tan 0 = - b I u ’ ~  
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Irldwo'oula be that produced by a magnetic monopole density having a constant ratio b 

From (26) a d  (27) one sees a fundamental difference between the introduction of an 
s d a r  field and that of a repulsive one ; the difference manifests itself in the 

+root (1 ~ c 2 ) ~ ' ~ .  While a repulsive scalar field (lower sign) can be introduced with 
strength c, the strength of an attractive scalar field is bounded to values of 

i< 1, We try a classical picture to see the origins of this difference. We can obtain 
,@hive scalar field solution of the equations by introducing in the sources of the 
ad static vacuum solution a certain amount of source of repulsive scalar field ; in 
&to rstore the equilibrium of the system we can introduce some additional mass 
wive); for strong repulsive scalar fields, large amounts of mass should be added. 
betuatjon is not the same, however, when one wants an attractive scalar field; if one 
~prts from a static system and introduces in it an attractive scalar source, the static 
mm be maintained by taking off some of the original mass: since the mass of the 

system is limited, one should expect a limit also on the amount of attractive 

One can have a superposition of a scalar field of the attractive class with one of the 

mass density, in the weak-field approximation. *&e. om 

source which could be introduced without destroying the equilibrium. 

Rpalsiveclass; these are incoherent, and then the constant C in (27) is given by 

c = (l-c,2+cf)1/2, (36) 
rberec, and c, are the coefficients in (30) corresponding to the attractive and repulsive 
alar fields, respectively. 

One can still have a superposition of two or more scalar fields of the same class. That 
IDpxposition can be either coherent or incoherent. A coherent superposition of two 
*fields of the same class occurs similarly to the superposition of two electrostatic 
potentials corresponding to two densities of electric charge, say; the net coefficient c in 
O o f a n  attractive scalar field which is a coherent superposition of two attractive scalar 
@ofcoefficients c1 and c2 is c = c1 + c 2 ,  and the constant C in (27) becomes 

c = [l -(c1 +c2)2]'/2; (37) 
~ C I  and c2 can be ofthe same or of opposite sign. An incoherent superposition of two 

fields of the same class occurs similarly to the superposition of an electrostatic 
phtial (repulsive) and a Scalar magnetostatic potential (also repulsive) originated by 
*eticmonoPoleS; neither do the corresponding sources add up, nor has the mathe- 
fptiealadditionofthe two scalar fields any physical sense ;the constant C in (27) becomes 
mrbis  case 

c = [l T(c:+c,2)]1'? 

the energy-momentum tensor 

* P i s  a mass density, U' = dx"/ds is the corresponding four-velocity vector field, 
is the energy-momentum.tensor associated with a scalar field S according to 

S," = -t(S, ,S, ,  - g,,S:"S,J2)/4n. ( A 4  
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The conservation equation TPViV = 0 gives 
p# = fS”J4n, 

where nP is the four-acceleration U ~ ~ U ~ .  

In a locally Minkowskian coordinate system with signature - 2 we get 

pwi = - (T yJ4n)s,i; (4 
the right-hand side is then the ith component of the density of force (Of IlOIl-gravitatioa 
nature) which is acting upon the dust ; the expression of this force contains a smlarqw 
tity times the gradient S,i of the scalar field. Following the usual definition ofthe valued 
a source as the negative ratio of the force experienced by that source by the gradient of& 
(potential) field, we see that the density CT of scalar source is given by 

d = TY$4n, cksl 

AS = ~ ~ J C C T .  (A61 
By analogy with the equation for the attractive Newtonian potential A V  = 4np ad 

that for the repulsive Coulomb potential A 4  = -4d. we are now able to relate theupp 
and lower signs in (A.6) with the attractive and repulsive scalar fields, respectively (see 

or in static systems 

§ 2). 
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